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The RADIOMICS revolution...

Characterization and

it

Radiomics:
Pictures, They Are Data'

mages Are More than
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In the past decade, the field of medical image analysis has
grown exponentially, with an increased number of pattern
recognition tools and an increase in data set sizes. These
advances have facilitated the development of processes for
high-throughput extraction of quantitative features that
result in the conversion of images into mineable data and
the subsequent analysis of these data for decision support;
this practice is termed radiomies. This is in contrast to the
traditional practice of treating medical images as pictures
intended solely for visual interpretation. Radiomic data
contain first-, second-, and higher-order statistics. These
data are combined with other patient data and are mined
with sophisticated bioinformatics tools to develop models
that may potentially improve diagnostic, prognostic, and
predictive accuracy. Because radiomics analyses are in-
tended to be conducted with standard of care images, it is
conceivable that conversion of digital images to mineable
data will eventually become routine practice. This report
describes the process of radiomics, its challenges, and its
potential power to facilitate better clinical decision mak-
ing, particularly in the care of patients with cancer.
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Figure 3: Covariance matrix of radiomic features. A total of 219 features
were extracted from each non—small cell lung cancer tumor in 235 patients.

IV. Data Integration
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Radiomics in‘oncology
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Radiomics and its emerging role in lung cancer research, imaging
biomarkers and clinical management: State of the art ;
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adiomics : Processing of Radiological Imaging
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Fig. 4. Multispectral analysis.
Voxel-by-voxel correlations of virtual non-contrast images, iodine from contrast-enhanced CT scans, and maximum standard uptake value (SUVmax) from PET scans are
shown for invasive adenocarcinoma.
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ost smart software in use today specializes on one type of

Robotics data, be that interpreting text or guessing at the content of

photos. Software in development at IBM has to do all those
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Software that can read medical images California, afide TSTON the pProject, says that Nor team and m—
and written health records could help others in the company are already getting ready to start testing the

radiologists work faster and more software outside the lab on large volumes of real patient data. “We're

accurately. getting into preparations for commercialization,” she says.
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Radiomics & Unsupervised clustering of image content
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Figure 1. Fully-automatic radiomics workflow for the extraction of informative features on the lung parenchyma: 1) Lung
segmentation and airway tree extraction; 2) Selection of relevant volumes employing the Statistical Region merging method’
matched with the expert annotations of lesions; 3) Extraction of texture features from each volume at 8, 16, 32, 64, 128 and 256
levels of quantization; 22 features are extracted from the Grey Level Co-Occurrence Matrix (GLCM) and 4 are global descriptor
of the volume (Mean, Median, Maximum and Minimum); 4) Optimization of the Random Forest (RF) hyperparameters (number
of trees, minimum number of samples for split and the maximum number of features to evaluate per node); The optimal
Random Forest (RF) classifier is computed per quantization level and number of features employed. The optimization employ a
grid search process with 100-fold cross validation where the training data (80% of the total) in each fold is filtered employing
Tomek Links™ to handle class imbalance; 5) Two-fold evaluation: a) The weighted F,-score is employed as a measure of the
classification quality of the most frequent TB lesion types; b) The importance of each feature is evaluated using as merit figure
the Gini importance.
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Radiomics & Unsupervised clustering of image content
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Do computers really need images?

Why not analyze the raw data directly?
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Radiomics feature extraction from raw data

Analyzing sinograms instead of reconstructed images

(True) Emission Volume Sinagram (stored data)
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Radiomics feature extraction from raw data

Analyzing sinograms instead of reconstructed images
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Radiomics & Unsupervised clustering of image content

Question 2:

Will computers do better with raw data
that with images?
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Radiomics & Unsupervised clustering of image content

Question 3:

How can we validate the accuracy of
computer analysis of raw data ?
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Radiomics & Unsupervised clustering of image content

Question 4:

What do we need to train a computer
and evaluate its performance?
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