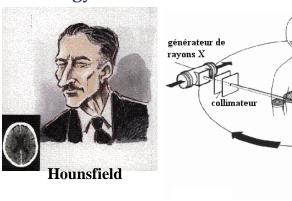
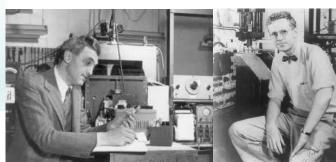

Disruptive Innovations in Image Acquisition: Is this the END?


Denis Le Bihan Founding Director, NeuroSpin, Saclay, France S

Two mainstreams for medical technology development

"Röntgen photography" plaque published 1896,
"Nouvelle Iconographie de la Salpetriere"
→ The "radiology" field was created in 1930


Nobel Prize in Medicine and Physiology, 1979

- **Cumulative process:** Progressive, incremental changes in basic knowledge of certain technologies over a long time, until *radical change* occurs
- Discovery or development of a technology initially *without medical purpose*

Disruptive Innovations in Image Acquisition: ... UNPREDICTABLE!

moniteu

ordinateu

The Nobel Prize in Physiology or Medicine 2003

"for their discoveries concerning magnetic resonance imaging

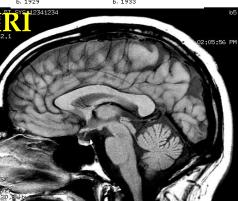


photo University in University Offices Paul C. Lauterbur ① 1/2 of the prize USA

University of Illinoi Urbana, IL, USA 1/2 of the prize United Kingdom University of Nottingham, School of Physics and Astronomy Nottingham, United Kingdom

<section-header>

LIFE CYCLE OF TECHNOLOGY (LCT)

Technology travels in time: Is born, grows up, decline and die

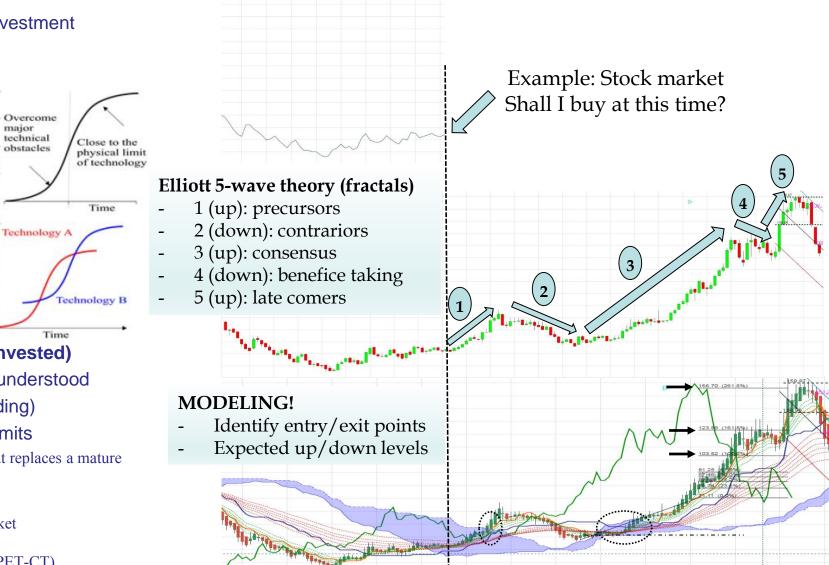
Understanding LCT+++

- To predict the ability to recover development investment

A 100

C

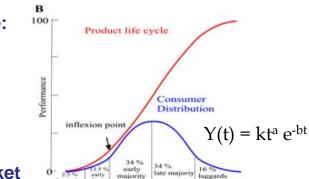
- To predict when to plan new projects
- To estimate future developments
- To decide whether or not to invest


Innovation is one of the most sensitive meeting points between *material and psychological viewpoints*. Success of innovation is almost *independant from technical novelty*.

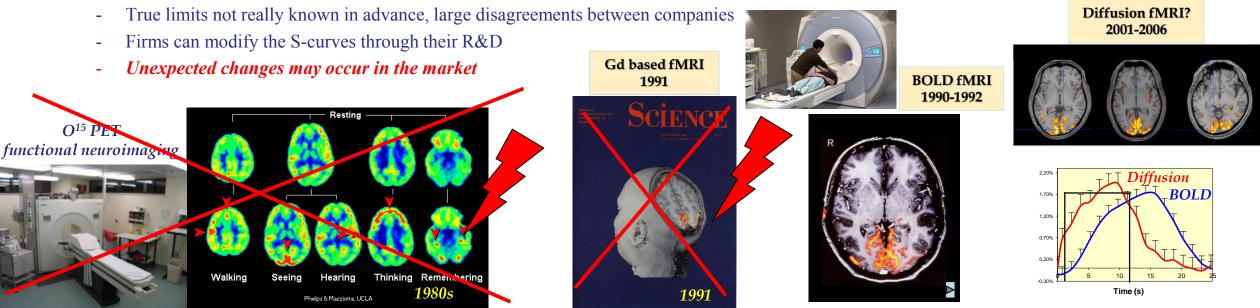
LCT: S-curve (Performance against unit of effort/money invested)

- Initial slow performance: fundamental not well understood
- Acceleration of performance (better understanding)
- Slows down when the technology reaches its limits

 \rightarrow identify discontinuity in an emerging technology that replaces a mature technology

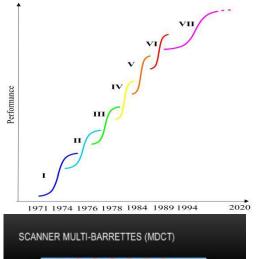

- \rightarrow identify birth of new market opportunities
- \rightarrow identify death or obsolesence of the technology market
- \rightarrow technological progress: succession of S curves:
- New S curve at the end of an Old S curve (ex: CT and PET-CT)

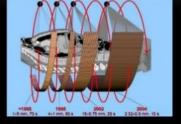
Time line connected to « market adoption »

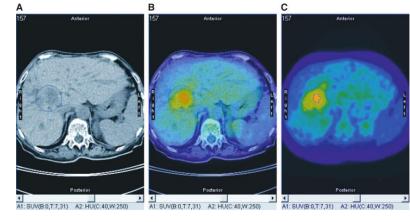

(spread of technology)

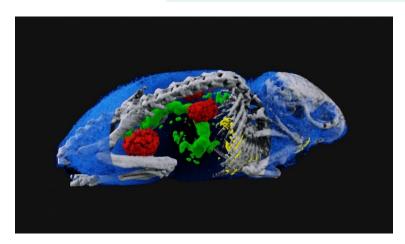
- > S-curve: Diffusion of technology against cumulative number of adopters of technology over time:
 - Slow at the begining (introduction to market)
 - Accelerates and is used in mass
 - Market saturated
 - \rightarrow Model to predict when a technology reaches its limits, identify and move to a new technology

Time


- Modeling (Rogers 2003, Moore 2014) of the transition from early visionaries market to mass market (Rogers 2003, Moore 2014)
 - Innovators (2.5%) & early followers (13.5%): understanding technology and performance
 - Early (34%) and late (34%) majority: solution and comfort
 - Sceptics (16%)
 - -> Chasm: breakpoint between early followers and early majority. Point where technology dies or survives (expected performance/revenue)
- Limitations:




Example of X-ray technology


- X-ray technologies generate the largest Medical Imaging Technology income by far
- New CT users build up on X-ray imaging
- CT: incremental improvements (7th generation).
- → Vacuum market at the begining, now mature stage, decline expected from S-curve pattern?

→ PET-CT 1st prototype: 1991, first sold: 2001, currently growing phase HYBRID SYSTEMS: Anatomy AND Function

Detector technology for the needs of the CERN Large Hadron Collider (LHC) experiments
 → Extension to the medical imaging field.

→Third generation of read-out chips allows 'colour' imaging during CT scans (*spectral imaging*) providing information about the density and the atomic structure of a tissue. (still in the *emerging phase* and has not been widely adopted)

PET-CT 1991

CT 1971

X-ray (film based) 1895

HYPE CYCLE (Gartner)

> Technology Trigger

- Breakthrough, public, press and industry interest

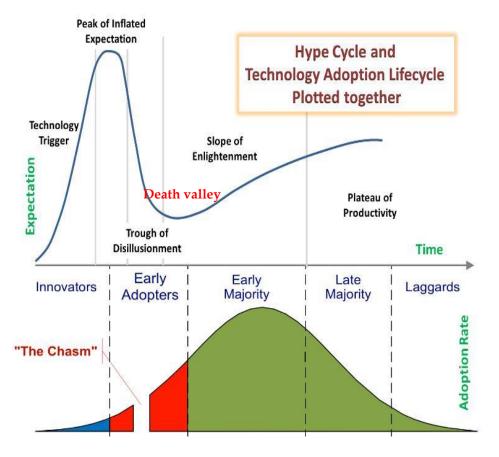
Peak of Inflated Technology

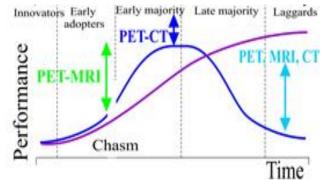
- Over-enthusiasm, unrealistic projections, success

Trough of Disillusionment (« Death Valley », chasm)

- Growing failures toward the limits, disappointment

Slope of enlightment


- Solid hard work, true understanding of usage, risks, benefits


Plateau of Productivity

- Real benefits demonstrated and accepted, stability of tools, reduced risk, adoption

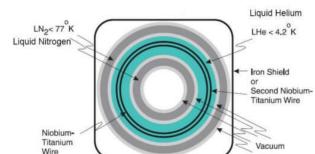
Death valley, chasm: need to reach « early majority » customers

- Need for financial ressources to allow performance to generate enough revenues
- Segment the market, find niche within a larger market
- Attack competitors on small segments through proper positionning
- **CT, MRI, PET:** now adopted by « skeptics », productivity plateau, *slow decline phase will start soon?*
- Hybrid PET-CT: early majority, slope of enlightment
- Hybrid PET-MRI: development started in late 1990s, first prototype by Siemens 2008. High complexity, cost (equipment, hospital infrastructures, tracers+++) Early adopters, enters the death valley (performance? cost? Policymakers+++)
- > Need to have pre-market information on **regulation mechanisms** which may affect cost-benefit, risk, effectiveness
- Sensitivity to MARKET of raw materials

WORLD MRI MARKET

2018: \$5 billions

The liquid helium crisis (MRI)

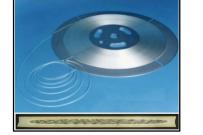


Niobium-Titanium solenoid design @ 4.2°K (supraconductivity)

· Real :

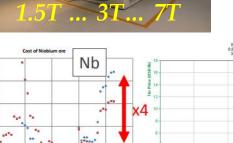
= 1998

Classic magnet technology

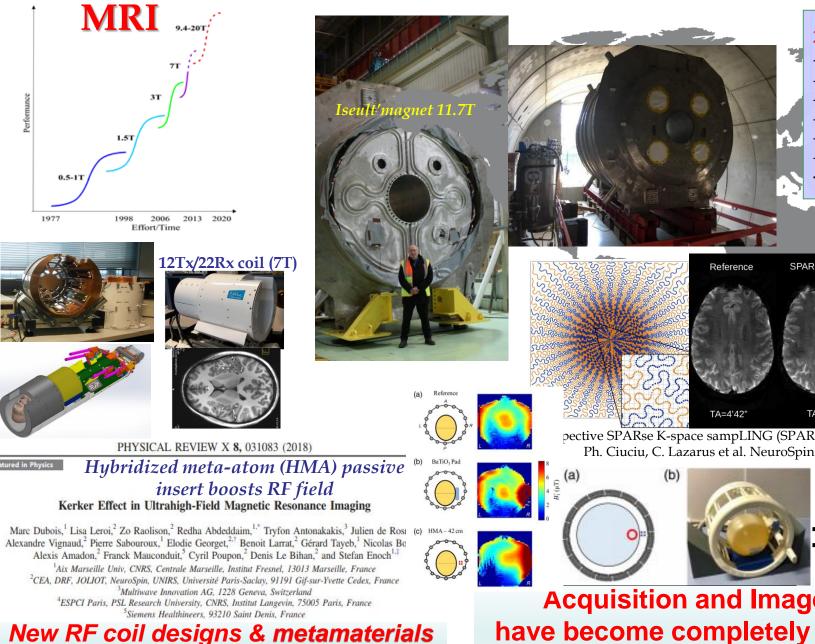

~1,500 liters of liquid helium

BlueSeal micro-cooling technology

~7 liters of liquid helium


Helium free magnets?

DI-BSCCO Type HT (Bi-2223)


Kyoto U. 1.5-3T HTC MRI system Can be turned on/off in <2 hours! Urayama, Fukuyama et al.

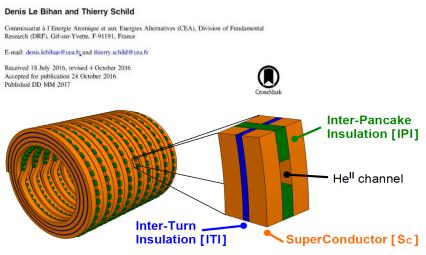
Sn in 2014 ~\$18/kg Type I Nb in 2014 ~\$420/kg

Cu in 2014 ~\$6/kg

- Slow start (imaging principle unclear, breakthrough, potential not clear compared to CT, cost), 80s economic recession
- Acceleration has been driven by increase in image quality (phased-array RF coils), magnetic field and cost decrease

2018 - $3T : \approx 6000$ installed systems - 7T : \approx 50 installed systems (FDA certification in 2017!) - 1 @ 8T and 5 @ 9.4T systems (USA, Germany) - 1 system @ 10,5T (Minneapolis) - 3 orders @ 11.7T : F, USA, Corea - 1 project @ 11.7T or 14T: Germany - 1 project @ 14T or 20T: USA New signal spatial encoding strategies (sparse sampling) SPARKLING TA=35" pective SPARse K-space sampLING (SPARKLING) 2.2 3.4 Tomi-Tricot, Amadon A et al. (2018) M. Cloos, N. Boulant, M. Luong, G. Ferrand, E. Giacomini, M.-F. Hang, D. Le Bihan, and A. Amadon, NeuroImage 62:2140-50 (2012).

Acquisition and Image Reconstruction/Processing have become completely intermingled (*Machine Learning*)


TA=4'42"

Superconductor Science and Technology

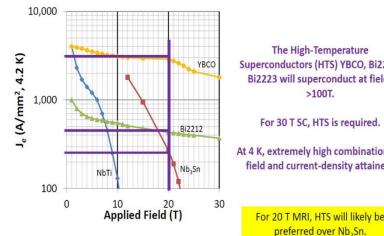
Topical Review

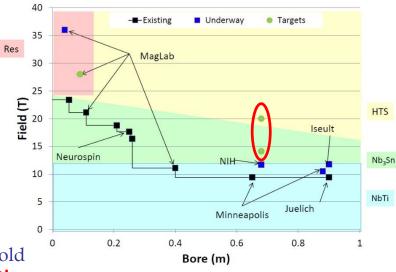
Human brain MRI at 500MHz, scientific perspectives and technological challenges

Double pancake design (LHC/CERN, Iter/Nuclear Fusion)

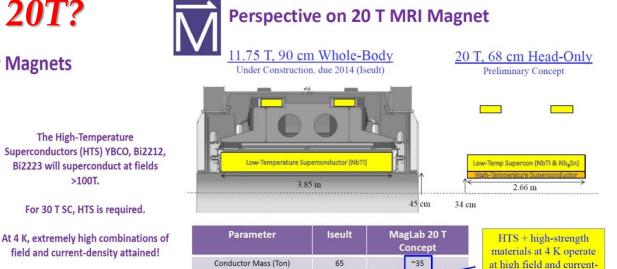
The Road to 20 Tesla for Human Studies: Barriers and 8 Rewards.

Thomas Budinger¹, Mark Bird², Lucio Frydman^{2,3}, Joanna Long³, Thomas Mareci³, Victor Schepkin², Dean Sherry⁴, Daniel Sodickson⁵, Charles Springer ⁶, Kamil Uğurbil ⁷, Lawrence Wald⁸


- 1.Lawrence Berkeley National Laboratory, Univ. of California, Berkeley
- 2. National High Magnetic Field Laboratory, Florida State Univ., Tallahassee
- 3. McKnight Brain Research institute, Univ. of Florida, Gainesville
- 4. University of Texas, Southwestern
- 5. New York University, School of Medicine
- 6. Oregon Health Sciences University
- 7. University of Minnesota
- 8. Massachuetts Gen. Hospital, Harvard


New directions in science are launched by new tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain old things in new ways. The effect of a tool-driven revolution is to discover new things that have to be explained. Freeman Dyson (1997) Imagined Worlds Havard University Press


Toward 14 & 20*T*?

Superconducting Materials for Magnets

NbTi only 📃 Nb₃Sn Required High Temperature Superconductors

~350

~40

MagLab

MRI Magnet Conductor Design

338

26.4

CEA

Stored Energy (MJ)

Current Density (A/mm²)

Magnet Design

	3 T, 90 cm	21 T, 10 cm	11.74 T, 90 cm (Iseult)	14 T, 68 cm (proposed)
Superconductor	NbTi	Nb ₃ Sn	NbTi	Nb ₃ Sn
# of strands	1	1	10	100
Current (Amps)	~300	285	1,500	10,000
Reinforcement	Cu	Steel	Cu	Steel
Strength (MPa)	>250	1,400	>250	1,400
Stiffness (GPa)	110	200	110	200
Stabilizer	Cu	Cu	He	He
C _p (mJ/cc/K)	1	1	552	552
Protection	Cu	Cu	Cu	Cu
J _{cu} (A/mm²)	~280	~230	~70	~250
	ž min			

density resulting in

compact magnets.

,400 / 250 = 5.6 > 3.14

>100T.

preferred over Nb₃Sn.

Courtesy M. Bird, National High Magnetic Field Lab, Florida State U