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Olaf Ronneberger @0Ronneberger - Nov 6 v
As of today the U-net arxiv.org/abs/1505.04597 is the most-cited paper in the 21
years history of the #miccai conference (3201 citations according to google
scholar scholar.google.co.uk/scholar?hl=ené...). It just overtook the Frangi-filter
from 1998 (scholar.google.co.uk/scholar?hl=en&...).
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End to end approaches? 2 vfmns

Image reconstruction
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White matter tract segmentation 2

\ & - =7 Tractograp_hy and atlas-based
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Minutes to multiple hours

Diffusion tensor Streamlines Segmentation

Reconstruction & Clustering/Atlas
Step 1 Step 2
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Step 3
Post-processing
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White matter tract is now segmented in 0.5 sec <« 2z~

Diffusion tensor WM neural tract
Neuro4Neuro \ I A
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Deep learning network trained and evaluated on more than 9.000 dMRI scans

Bo Li, Esther Bron
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Who will be automated?
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Radiogenomics: predicting genetic mutation

status from non-invasive imaging data
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How to find optimal workflow for each application?
e Best algorithm(s) A* € {A() ... A for each step?

e Best (hyper)parameters A* € {AM) ... AWK for each step?

Solution: Combined Algorithm Selection and Hyperparameter
optimization problem (CASH). 1
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Automatic radiomic signature optimization (e

prediction =
50 .
& >~>", posteriors

WORC: extension of CASH to radiomics. Solver:
@® Pseudo-randomly generate 100.000 different radiomics workflows.

® Evaluate and rank the workflows.

® Create model from ensemble of top 50 workflows.

Martijn Starmans, Stefan Klein et al.
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Experiments e

Malignant/ 1p19q co-deletion/
Benign no co-deletion
Modality | T2w (FatSat) MR | T2w + Tlw MR




Results

Reported as mean [95% confidence interval]
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AUC
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Sensitivity
Specificity
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Totally new imaging biomarkers



Convolutional Neural Network (CNN) Architecture for brain age Eraspaus MC
prediction (trained on 5865 images, tested on 2353) Senfnd

» Conv(5,2) + Batchnorm + RelU =) Global Average Pooling cox = 0,mae pg
1 ,female (1)

|:> Conv(3,1) + Batchnorm+ RelU ~ mmmm) Fully Connected

. Maxpooling(2,2) mm=) Fully Connected + Dropout(0.2)

N
=

160x192x144

80x96x72

(32) 40x48x36
(48) 20x24x18
(64) 10x12x9
(80)

Johnny Wang, Gennady Roshchupkin et al.



Kaplan-Meier curves for new biomarker Eras 23@
(delta brain / calendar age) =C
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Population Imaging Genetics __/é:«/m

Brain changes:

Risk factors:

Hippocampal
volume

. n re VOLUME 44 NUMBER 5 MAY 2012
G e n et I C www.nature. com/naturegenetics

Blood pressure
Smoking

Figure 1: Genome-wide Manhattan plot for hippocampal volume

Genotypic barcodes :

from expression data #3

Loci associated with
human brain size

Bone mineral density
and fracture risk




Predicting is not easy

Causes
Alzheimer’s

High risk
APOE4
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Eras

. AD risk genes
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Imaging genetics: gaining insight 2ol

VBM analysis consisted of 4071 nondemented persons with information available on both
genome-wide genotyping and MRI data from the population-based Rotterdam Study. The
mean age was 64.7 (+/-10.7) years and 2251 (55%) subjects were women.

Medial

Roshchupkin et al. Neurobiology of ageing
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Some observations A zafons

The current hype in Al in radiology is mostly about image perception

Potential data driven science is much larger
- diagnostic and prognostic workflow

- modeling complex relations between imaging, omics & genetic data
** Holy grail questions:
Find phenotype = f (genotype, environmental factors)
Predict phenotype (T+1) = f (genotype, environmental factors, phenotype (T)

= Access to good data and clinical knowledge about these data is key
- we need to adopt FAIR data principles, and
- build co-creation environments (clinicians, machine learning)

= Still large challenges to address!
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MICCAI — ACR /RSNA / ESR collaboration _~z~tw
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Our TOUCH-AI use cases are scenarios where use of artificial intelligence (Al) may help improve medical imaging care.

They were created to empower Al developers to produce algorithms that are clinically relevant, ethical, and effective. Each use case
provides narrative descriptions and flow charts which specify the health care goal of the algorithm, the required clinical input, how
it should integrate into the clinical workflow and how it will interface with users and tools.




Erasmus MC

ACR - MICCAI MoU B

“The ACR is creating use
cases for imaging Al and
will work with MICCAI to
leverage this knowledge
base in MICCAI's imaging |
Al competitions." |
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